Bemessung von Mauerwerk-Konstruktionen nach Eurocode 6

Prof. Dr.-Ing. Detleff Schermer

Ingenieurbüro Schermer GmbH, Burghausen
Prüfingenieur für Massivbau
öbuvSV für Beton-. Stahlbeton- und Mauerwerksbau

Einführung Sicherheitskonzept Vereinf. Verfahren Konstruktion Beispiele

Fazit

Übersicht

- ☐ Anforderungen: Tragfähigkeit / Gebrauchstauglichkeit
- Spannungsfeld: Statik Schallschutz Wärmeschutz
- Konstruktion: Augenmerk auf Wand-Decken-Knoten → Ausbildung Detail
- System bei geringen Lasten / Rahmen mit zugfesten Anschlüssen
- Beispiel: Nachweisführung im vereinfachten Verfahren

2

Sicherheitskonzept

Vereinf. Verfahren

Konstruktion

Beispiele

Fazit

Eurocodes

Warum?

Sicherheitskonzept

Vereinf. Verfahren

Konstruktion

Beispiele

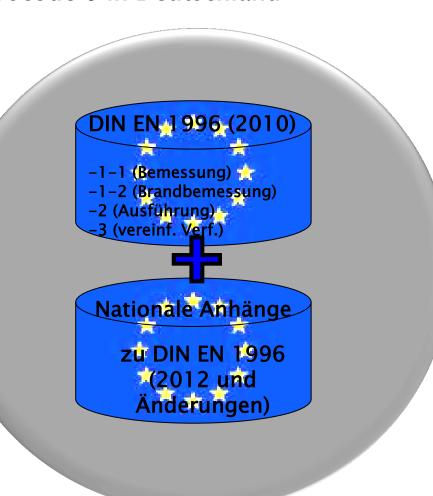
Fazit

Neue Norm: Eurocode 6 in Deutschland

- ☐ Eurocode 6 ist bauaufsichtlich eingeführt
- Anwendung bauaufsichtlich seit längerem erlaubt (Gleichwertigkeitserklärung der Bauaufsicht: seit Juli 2012)
- \square ab 1.1.2016 ist EC 6 Pflicht
- Parallelgeltung von DIN 1053-1 bis Ende 2015
- Anderungen in DIN 1053-1 (Mindestauflast und Teilauflagerung) bereits jetzt wirksam (Erklärung FK Bautechnik 10.4.2014)

5

Sicherheitskonzept


Vereinf. Verfahren

Konstruktion

Beispiele

Fazit

Eurocode 6 in Deutschland

Die Anwendung der EUROCODES ist nur zusammen mit den *Nationalen Anhängen* (=NA) erlaubt

=> Festlegung der NDP (*National festzulegende Parameter*) für Anpassung Sicherheitsniveau

Sicherheitskonzept

Vereinf. Verfahren

Konstruktion

Beispiele

Fazit

Eurocode 6 in Deutschland:

Änderungen / Erweiterungen im Vergleich zu DIN 1053-1

- Detaillierte Anpassung der Festigkeitswerte an die Baustoffe (Steinart, Lochbild, Mörtel)
 => wirtschaftlichere Nachweisführung
- ☐ Knicklänge bis zur Schlankheit 27 möglich
- Berücksichtigung eines reduzierten Überbindemaßes $\ddot{u}/h<0,4$
- Berücksichtigung teilaufgelagerte Geschossdecken
- Neu: Stark vereinfachtes Verfahren für Nachweis einfacher Konstruktionen (Anhang A von Eurocode 6−3)

Sicherheitskonzept

Vereinf. Verfahren

Konstruktion

Beispiele

Fazit

Eurocode 6 in Deutschland:

Einschränkungen

- in Deutschland nicht bewährte Bauweisen werden ausgeschlossen, z.B. vorgespanntes Mauerwerk oder Mauerwerk mit Randstreifenvermörtelung
- Anpassung und Einschränkung der Baustoffe auf in Deutschland bewährte Arten insbesondere Steinarten (Lochbilder, Lochanteile, Steinformen, etc.)
- Anpassung der Festigkeitswerte
- Kein bewehrtes Mauerwerk geregelt
- ☐ Kein Normalmörtel NM I mehr geregelt

Sicherheitskonzept

Vereinf. Verfahren

Konstruktion

Beispiele

Fazit

Nachweiskriterien

I. Tragfähigkeit (= GZ-T: maßgebender Nachweis)

Sicherheitskonzept

Vereinf. Verfahren

Konstruktion

Beispiele

Fazit

Nachweiskriterien

- I. Tragfähigkeit (= GZ-T: maßgebender Nachweis)
- II. Gebrauchstauglichkeit (im Mauerwerksbau i.d.R über GZ-T automatisch mit abgedeckt)

Sicherheitskonzept

Vereinf. Verfahren

Konstruktion

Beispiele

Fazit

Nachweiskriterien

- I. Tragfähigkeit (= GZ-T: maßgebender Nachweis)
- II. Gebrauchstauglichkeit (im Mauerwerksbau i.d.R über GZ-T automatisch mit abgedeckt)
- III. Dauerhaftigkeit (über Baustoffanforderungen und Konstruktionsregeln abgedeckt)

Sicherheitskonzept

Vereinf. Verfahren

Konstruktion

Beispiele

Fazit

Sicherstellung der grundlegenden Vorgaben:

I. Tragsicherheit

II. Gebrauchstauglichkeit

III. Dauerhaftigkeit

A. Bemessung

Nachweise auf Bauteiltragfähigkeit fokussiert, partiell auch Gebrauchstauglichkeit (Randspannung, Randdehnung)

B. Konstruktive Anforderungen

grenzen den bewährten Anwendungsbereich von Mauerwerk ab (u.a. Wanddicken, Schlitze, Überbindemaß)

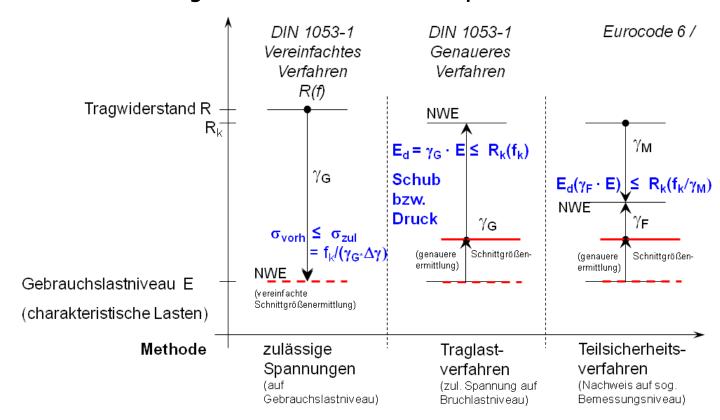
C. Baustoffeigenschaften

Auswahl zulässiger und bewährter Baustoffe und Bauweisen sichert verschiedene Anforderungen (insbesondere Dauerhaftigkeit)

Sicherheitskonzept

Vereinf. Verfahren

Konstruktion


Beispiele

Fazit

Eurocode 6: Teilsicherheitskonzept

$$E_d \leq R_d$$

□ Anwendung des Teilsicherheitskonzeptes

Sicherheitskonzept

Vereinf. Verfahren

Konstruktion

Beispiele

Fazit

Eurocode 6: Teilsicherheitskonzept

 $E_d \leq R_d$

Übergang von

Spannungsnachweisen (alte DIN1053-1: σ_0 -Werte)

zu

Bauteiltragfähigkeiten ("Rd"-Bezeichnung)

- Nachweisebene = Bemessungsniveau (= "design"-Lastniveau)
- Modell für Bemessung enthält bereits Verhaltenseffekte bzw.
 Umrechnungen von Spannungen und Schnittgrößen

Sicherheitskonzept

Vereinf. Verfahren

Konstruktion

Beispiele

Fazit

Eurocode 6: Teilsicherheitskonzept

 $E_d \leq R_d$

Einwirkungsseite:

- Ermittlung vom Bemessungswerten (Index "Ed")
 - Normalkraft mit /ohne Ausmitte : N_{Fd}
 - Scheibenbeanspruchung / Biegung: $M_{scheibe,Ed}$
 - Plattenbeanspruchung (Ausfachungsmauerwerk) $M_{Platte, Ed}$
 - Schubbenbeanspruchung (Scheibe / Platte) : V_{Ed}

Sicherheitskonzept

Vereinf. Verfahren

Konstruktion

Beispiele

Fazit

Eurocode 6: Teilsicherheitskonzept

 $E_d \leq R_d$

Einwirkungsseite:

Teilsicherheitsbeiwerte:

Ständige und vorübergehende Bemessungsituation (Standardfall):

Ständige Einwirkungen	$\gamma_G=1,35$ bzw.		$\gamma_G=1,0$ (günstige Wirkung)		
Veränderliche Einwirkungen	$\gamma_Q = 1,5$	bzw.	$\gamma_Q = 0$ (güns	tige Wirkung)	

$$N_{Ed} = \begin{pmatrix} 1,35 \\ 1,0 \end{pmatrix} \cdot N_{Gk} + \begin{pmatrix} 1,5 \\ 0 \end{pmatrix} \cdot N_{Qk}$$

Vereinfachter Ansatz bei Hochbauten mit StB-Decken und $q_k \leq 3.0 \text{kN/m}^2$ für Nachweis unter maximaler Normalkraft (Standardnachweis für MW unter Druck):

$$N_{Ed} = 1.4 \cdot \left(N_{Gk} + \cdot N_{Qk}\right)$$

Kellermauerwerk, windbeanspruchte Wände mit geringer Auflast und Schubwände auch für den Fall $N_{Ed,min} = 1,0 \cdot N_{Gk}$ nachweisen!

17

Sicherheitskonzept

Vereinf. Verfahren

Konstruktion

Beispiele

Fazit

Eurocode 6: Teilsicherheitskonzept

 $E_d \leq R_d$

Widerstandsseite:

abhängig von:

- Baustofffestigkeiten (charakteristische Festigkeiten, z.B. Druckfestigkeit f_k)
- ☐ Tragmodell für jeweilige Beanspruchungsart, z.B.
 - Normalkraftbeanspruchung mit /ohne Ausmitte
 - Scheibenbeanspruchung
 - Plattenbeanspruchung (dominierende Biegung)
 - Schubbenbeanspruchung (Scheibe oder Platte)

Sicherheitskonzept

Vereinf. Verfahren

Konstruktion

Beispiele

Fazit

Eurocode 6: Teilsicherheitskonzept

 $E_d \leq R_d$

Widerstandsseite:

Teilsicherheitsbeiwerte

Mauerwerk (unbewehrt)	$\gamma_{M}=1,5$
Bewehrtes Mauerwerk Bewehrungsstahl und Spannstahl Verankerung der Bewehrung	$\gamma_{Q} = 10,0 (!)$

Sicherheitskonzept

Vereinf. Verfahren

Konstruktion

Beispiele

Fazit

Eurocode 6: Teilsicherheitskonzept

 $E_d \leq R_d$

Widerstandsseite:

Festigkeitswerte (Bemessungswerte auf "Design"-Niveau => Index "d")

Druckfestigkeit

$$f_d{=}\zeta^*~f_k/\gamma_M$$

bei Pfeilern mit $A < 0.1 \text{ m}^2$ weitere Abminderung mit (0.7+3*A) Forderung bei geteilten Steinen: 0.8 Mindestwandquerschnitt: 0.04 m^2

- Schubfestigkeit (Unterschied Scheiben- / Plattenschubfestigkeit) $f_{vd} = f_{vlt}/\gamma_M$
- Biegefestigkeit (Platten) $f_{xd} = f_{xt}/\gamma_M$

Sicherheitskonzept

Sonderfall: Pfeiler

Vereinf. Verfahren

Konstruktion

Beispiele

Fazit

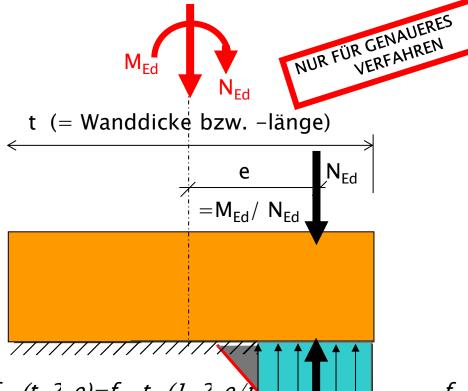
- ☐ Erhöhte Sicherheitsanforderungen aufgrund geringer Querschnittsfläche (fehlende Umlagerungsmöglichkeit, stärkere Auswirkung von Fehlstellen)
- ☐ Mindestwandquerschnitt: 0,04m²
- Modifikation der Druckfestigkeit bei Pfeilern mit A < 0,1 m²: Abminderung mit 0,8

$$\rightarrow f_d = 0.8 \% f_k / \gamma_M = f_k * 0.8 * 0.85 / 1.5 = f_k * 0.45$$

(im genaueren Verfahren: EC6-1-1 Abminderung mit (0,7+3*A) möglich)

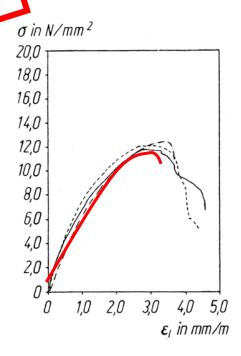
Sicherheitskonzept

Vereinf. Verfahren


Konstruktion

Beispiele

Fazit


Eurocode 6: Teilsicherheitskonzept

Modellvostellung für das Verhalten von Mauerwerk unter exzentrischer Druckbeanspruchung M_{Ed} und N_{Ed}:

$$N_{Rd} = f_d \cdot (t-2 \cdot e) = f_d \cdot t \cdot (1-2 \cdot e/t)$$

$$N_{Rd} = f_d \cdot t \cdot \phi$$

$$f_d = f_{k*} \zeta / \gamma_M$$

22

Einführung Sicherheitskonzept Vereinf. Verfahren Konstruktion

Beispiele

Fazit

Sicherheitskonzept

- ☐ Standardfall: auf Druck beanspruchte Querschnitte
- ☐ Sonderfälle:
 - Kellerwand (Nachweis über $N_{min,erforderlich}$ und N_{max})
 - winbeanspruchte tragende Wandbauteile mit geringer Druckkraft (Nachweis über $N_{min,erforderlich}$)
 - Ausfachungsflächen (nicht-tragende Bauteile): tabellarisch
- □ Nicht im vereinfachten Verfahren behandelt:
 - Schubbeanspruchung (kombinierte M-N-V-Beanspruchung)
 - allgemeine Biegebeanspruchung (x- / y-Richtung)
 - Teilflächenbelastung

<u>Vereinfachtes Verfahren</u> (EC 6-3):

- reduziertes Überbingemaß ü/h< 0,4
- minimaler Aufwand im vereinfachten Verfahren:
- ⊳ es ist <u>nur die vorhandene Normalkraft</u>im Querschnit zu ermitteln

Einführung
Sicherheitskonzept
Vereinf. Verfahren
Konstruktion

Fazit

Beispiele

Nachweis im <u>vereinfachten Verfahren</u> (EC 6-3) - Standardfall: druckbeanspruchte Wandbauteile

- □ Nachweis per Hand durchführen! $N_{Ed} \le N_{Rd}$
- ☐ Minimaler Aufwand: Keine Biegemomentbestimmung erforderlich
- ☐ Grenzen beachten: Deckenstützweite max. 6m

Überbindemaß 0,4*Steinhöhe

Deckenauflagertiefe a≥t/2

Wanddicken / Schlankheitsgrenzen: Tabelle

	Bauteil		Voraussetzungen				
		Wanddicke	lichte	auflieger	de Decke		
			Wandhöhe	Stützweite	Nutzlast ^a		
		t	h	<i>l</i> f	q_{k}		
		mm	m	m	kN/m²		
1	tragende	≥ 115	≤ 2,75	≤ 6,00	≤ 5		
	Innenwände	< 240					
2		≥ 240					
3	tragende	≥ 115 ^b	≤ 2,75	≤ 6,00	≤ 3		
	Außenwände und	< 150 ^b					
4	zweischalige Haustrennwände	≥ 150 ^c	-				
	naustrennwande	< 175 ^c					
5		≥ 175	1		≤ 5		
		< 240					
6		≥ 240	≤ 12 <i>t</i>				

Sicherheitskonzept

Nachweis im <u>vereinfachten Verfahren</u> (EC 6-3) - Standardfall: druckbeanspruchte Wandbauteile

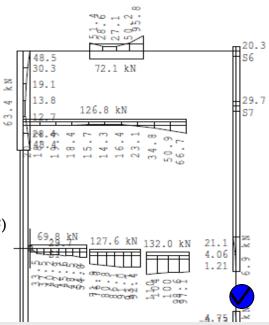
Vereinf. Verfahren

Konstruktion

Beispiele

Fazit

- \square Nachweis per Hand durchführen! $N_{Ed} \leq N_{Rd}$
- am aufwändigsten ist die Lastermittlung


$$N_{Ed} = 1,35 \cdot N_{Gk} + 1,5 \cdot N_{Qk}$$

Überlagerung 1 "Charakteristisch" Auflagerkräfte [kN/m] | Maßstab 1:100

- aus FE-Berechnungen: Ausgabe maximaler Auflagerkräfte 1,0-fach Σ (N_{Gk}+N_{Qk})
- □ Unterscheidung nach $N_{Gk}+N_{Qk}$?
- Vereinfachung:

$$N_{Ed} = 1.4 \cdot (N_{Gk} + N_{Qk})$$

(gilt für Hochbauten mit Betondecken und $q_k \le 3kN/m^2$)

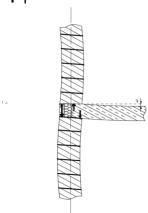
Sicherheitskonzept

Nachweis im vereinfachten Verfahren (EC 6-3) - Standardfall: druckbeanspruchte Wandbauteile

Betrachtete Versagensmechanismen im vereinfachten Verfahren:

Vereinf. Verfahren

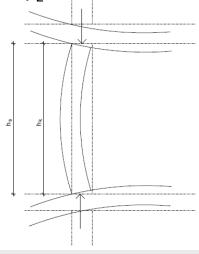
Konstruktion


Beispiele

Fazit

Deckeneinspannung

DIN 1053–1: k_3 –Faktor


Eurocode 6–3: ϕ_1 –Faktor

Knicken

k₂-Faktor

 ϕ_2 -Faktor

Sicherheitskonzept

Vereinf. Verfahren

Konstruktion

Beispiele

Fazit

Nachweis im vereinfachten Verfahren (EC 6-3) - Standardfall: druckbeanspruchte Wandbauteile

Einwirkung: maximale Druckkraft N_{Ed} maßgebend:

$$N_{Ed} = 1.4 * (N_{Gk} + N_{Qk})$$

Widerstand:
$$N_{Rd} = t * f_d * min \{ \Phi_1 ; \Phi_2 \}$$

 $f_d = f_k *0.85/1.5$

Charakteristische Mauerwerksdruckfestigkeit

$$\Phi_1 = 1.6 - \frac{t_f}{6m} \le 0.9 \cdot \frac{a}{t}$$
 bei: $f_k \ge 1.8N / mm^2$

$$\Phi_1 = 1.6 - \frac{l_f}{5m} \le 0.9 \cdot \frac{a}{t}$$
 bei: $f_k < 1.8N / mm^2$

nur wenn Wand ein <u>Endauflager</u> einer Decke ist

$$\Phi_1 = 0.33$$
 bei: Dachdecker

$$\Phi_2 = 0.85 \cdot \frac{a}{t} - 0.0011 \cdot \left(\frac{h_{ef}}{t}\right)^2$$

Nachweis:
$$N_{Ed} \leq N_{Rd}$$

Knicklänge: h_{ef} Wanddicke: tDeckenauflagertiefe: aDeckenstützweite: l_f

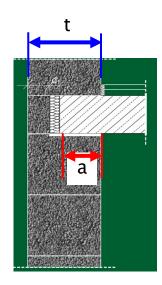
Sicherheitskonzept

Vereinf. Verfahren

Konstruktion

Beispiele

Fazit


Nachweis im vereinfachten Verfahren (EC 6-3) - Standardfall: druckbeanspruchte Wandbauteile

Eingangsparameter:

Wanddicke:

Deckenauflagertiefe:

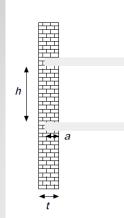
(a \geq t/2, Empfehlung: a=2·t/3

Deckenstützweite:

1 2 I_{n2} 3 4

| I₁ | I₂ | I₃

(bei 2-achsig gespannten Decken: I_f=kürzere Deckstützweite)


Sicherheitskonzept

Vereinf. Verfahren

Konstruktion

Beispiele

Fazit

Nachweis im vereinfachten Verfahren (EC 6-3) - Standardfall: druckbeanspruchte Wandbauteile

☐ Eingangsparameter:

Knicklänge: hef

Standardfall: $\overline{2}$ -seitige Knickhalterung durch Massivdecke

$$h_{ef} = \rho_2 \cdot h$$
 (h= lichte Geschosshöhe)

hierbei:

 $h_{at} \geq 0.75 \cdot h$

$$t \le 17,5 \text{ cm}$$
: $\rho_2 = 0,75$

17,5 cm
$$< t \le 25$$
 cm: $\rho_2 = 0.90$

$$\rho_2 = 1.0$$

erfordert Mindestauflagertiefe a:

$$t < 24cm$$
: $a = t$

$$t \ge 24$$
cm: $a \ge 17,5$ cm

Sicherheitskonzept

Vereinf. Verfahren

Konstruktion

Beispiele

Fazit

Baustoffe: Wahl des Systems

- Umstellung der Festigkeiten von σ_0 (DIN 1053-1) auf charakteristische Mauerwerksdruckfestigkeit f_k (EC6)
- Normsteine (Auszug):=> f_k aus Tabellen in Norm

Stein-	Steindruck-	Mörtelgruppe			
sorte	festigkeits-	П	lla	III, IIIa	
	klasse	f _k N/mm²			
Hbl, Hbn	2	1,4	1,5	1,7	
	4	2,2	2,4	2,6	
	6	2,9	3,1	3,3	
	8	2,9	3,7	4,0	
	10	2,9	4,3	4,6	
_	12	2,9	4,8	5,1	
V, Vbl	2	1,5	1,6	1,8	
	4	2,5	2,7	3,0	
	6	3,4	3,7	4,0	
	8	3,4	4,5	5,0	
	10	3,4	5,4	5,9	
	12	3,4	6,1	6,7	
	16	3,4	6,1	8,3	
	20	3,4	6,1	9,8	

Sicherheitskonzept

Vereinf. Verfahren

Konstruktion

Beispiele

Fazit

Baustoffe: Wahl des Systems

- Zulassungsgeregelte Steine : f_k-Werte aus Zulassung
- □ Beispiel: KLB-Großformate / Planelemente KLBQUADRO (Z 17.1–852)

SFK	2	4	6	12	20
alt: σ_0 [MN/m ²]	0,6	1,0	1,4	2,2	3,2
neu: f _k [MN/m²]	1,6	3,1	4,3	6,3	10

Sicherheitskonzept

Vereinf. Verfahren

Konstruktion

Beispiele

Fazit

Weitere Vereinfachung: <u>Stark Vereinfachtes Verfahren</u> (EC6-3, Anhang A) (neue A2-Änderung: August 2014)

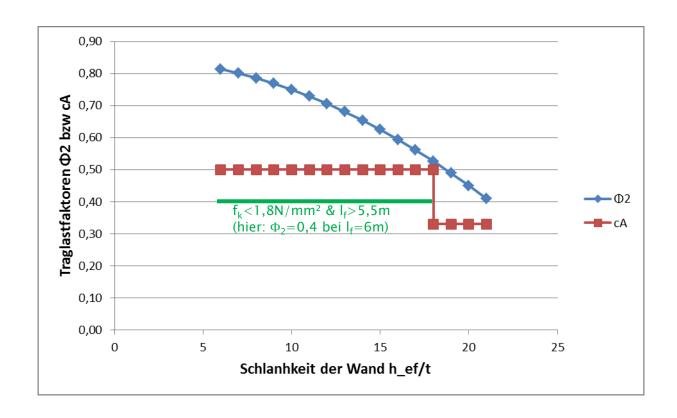
- Weitere Vereinfachung des Nachweises druckbespruchter Wände
- Anwendungsgrenzen (zusätzlich zu denen des vereinf. Verf.):
 - max. 3 Geschosse über GOK mit lichten Geschosshöhen h≤3m
 - Gebäudehöhe <3*Gebäudebreite
 - max. Schlankheit 21
 - bei teilaufliegender Decke: Wanddicke t_{min}= 36,5cm
 - Deckenauflagertiefe a≥t· $2/3 \ge 8,5$ cm

$$\square$$
 Nachweis: $N_{Rd} = c_{A} \cdot A \cdot f_{d} \geq N_{Ed}$

$$\begin{array}{llll} c_{\scriptscriptstyle A} = 0.5 & \textit{f\"{u}r} & h_{e\!f} \, / \, t_{e\!f} \leq \! 18 \\ \\ c_{\scriptscriptstyle A} = 0.4 & \textit{f\"{u}r} & h_{e\!f} \, / \, t_{e\!f} \leq \! 18 & f_{\scriptscriptstyle k} < \! 1.8N \, / \, mm^2 & \textit{und} & l_{\scriptscriptstyle f} > \! 5.5m \\ \\ c_{\scriptscriptstyle A} = 0.33 & \textit{f\"{u}r} & 18 < h_{e\!f} \, / \, t_{e\!f} \leq \! 21 \, \textit{\& Endauflager bei Dachdecken} \end{array}$$

Sicherheitskonzept

Weitere Vereinfachung: <u>Stark Vereinfachtes Verfahren</u> (EC6-3, Anhang A) (neue A2-Änderung: August 2014)


Vereinf. Verfahren

Bemessung: $N_{Rd} = c_A \cdot A \cdot f_d \ge N_{Ed}$

Konstruktion

Beispiele

Fazit

Sicherheitskonzept

Vereinf. Verfahren

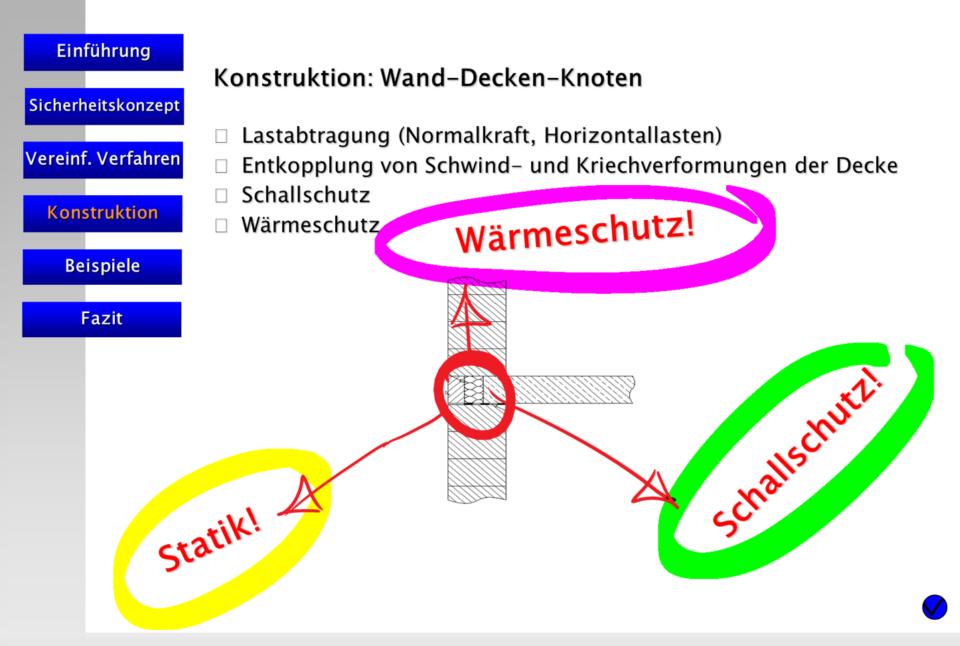
Konstruktion

Beispiele

Fazit

Nachweis im vereinfachten Verfahren (EC 6-3) - Broschüre

Einführung Sicherheitskonzept Vereinf. Verfahren Konstruktion


Beispiele

Fazit

Konstruktion: Wand-Decken-Knoten

- Lastabtragung (Normalkraft, Horizontallasten)
- ☐ Entkopplung von Schwind- und Kriechverformungen der Decke
- □ Schallschutz
- ☐ Wärmeschutz

Sicherheitskonzept

Vereinf. Verfahren

Konstruktion

Beispiele

Fazit

Konstruktion: Wand-Decken-Knoten

□ Variante Stirndämmung:

Sicherheitskonzept

Vereinf. Verfahren

Konstruktion

Beispiele

Fazit

Konstruktion: Wand-Decken-Knoten

- ☐ Einfluss der Auflagertiefe "a" auf die Tragfähigkeit der Wand
- Vereinfachtes Verfahren nach Eurocode 6-3
- □ Norm fordert:

 $a \ge t/2$ (Sonderfall: t = 36,5cm: $a \ge 17,5cm$)

☐ Empfehlung: a = 2/3 * t

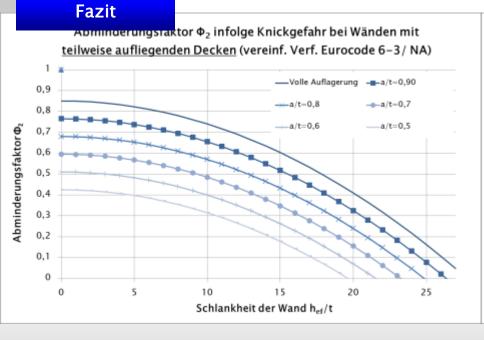
Sicherheitskonzept

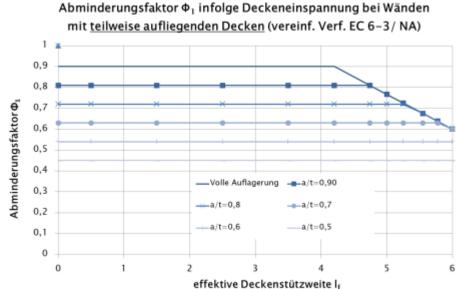
Vereinf. Verfahren

Konstruktion

Beispiele

Konstruktion: Wand-Decken-Knoten


- □ Einfluss der Auflagertiefe "a" auf die Tragfähigkeit der Wand
- Vereinfachtes Verfahren nach Eurocode 6-3


Knicken:

$$\Phi_2 = 0.85 \cdot \frac{a}{t} - 0.0011 \cdot \left(\frac{h_{ef}}{t}\right)^2$$

Deckenverdrehung:

$$\Phi_1 = 1.6 - \frac{l_f}{6m} \le 0.9 \cdot \frac{a}{t}$$

39

Einführung Sicherheitskonzept Vereinf. Verfahren Konstruktion Betondecke 20 cm Beispiele Mörtelausgleich NM II **Fazit** besandete Bitumendachbahn Styropor

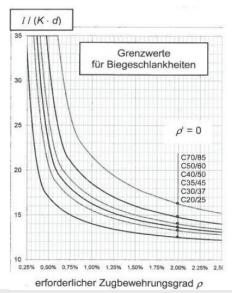
- Konstruktion: Wand-Decken-Knoten
 - Lastfreistreifen nur in oberen 1 bis max. 2
 Geschossen anordnen
 - Nicht im Bereich von hohen Druckkräften anordnen!!

Sicherheitskonzept

Vereinf. Verfahren

Konstruktion

Beispiele


Fazit

Konstruktion: Wand-Decken-Knoten

auf ausreichende Deckendicke achten:
 neue Biegeschlankheitskriterien nach Eurocode 2 beachten!

Empfehlung: Deckendicke mindestens 20cm (Schallschutz!)

Nicht an Beton "sparen"!

Sicherheitskonzept

Vereinf. Verfahren

Konstruktion

Beispiele

Fazit

Konstruktion: Wand-Decken-Knoten

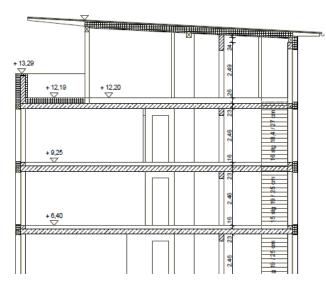
- □ auf ausreichende Deckendicke achten:
 - neue Biegeschlankheitskriterien nach Eurocode 2 beachten!
- ☐ Empfehlung: Deckendicke mindestens 20cm (Schallschutz!)
- Nicht an Beton "sparen"!
- Auflagertiefe je nach vorliegender Geschossbelastung anpassen:
 - obere zwei Geschosse: Lastfreistreifen (a > t/2)
 - darunter (mittleres Lastniveau): a=2/3*t
 - Bereiche mit sehr hoher Last: a > 2*t/3

Sicherheitskonzept

Vereinf. Verfahren

Konstruktion

Beispiele


Fazit

Sonderfall: Dachgeschoss mit geringen Druckkräften aus der Dachkonstruktion

Problematik: Horizontallasten (Wind oder Zwang aus Kriechen, Schwinden)

Aufnahme der Lasten durch auskragende / frei stehende

Mauerwerkswände prüfen

Sicherheitskonzept

Vereinf. Verfahren

Konstruktion

Beispiele

Fazit

Sonderfall: Dachgeschoss mit geringen Druckkräften aus der Dachkonstruktion

Nachweis mit der Gleichung Mindestauflast (auch nach alter Norm):

$$N_{\text{hm}} \ge \frac{3 \cdot q_{\text{Ewd}} \cdot h^2 \cdot b}{16 \cdot (a - \frac{h}{300})}$$

Dabei ist:

h die lichte Geschosshöhe

 $q_{\sf Ewd}$ der Bemessungswert der Windlast je Flächeneinheit

N_{hm} der Bemessungswert der kleinsten vertikalen Belastung in Wandhöhenmitte im betrachteten Geschoss

b die Breite, über die die vertikale Belastung wirkt

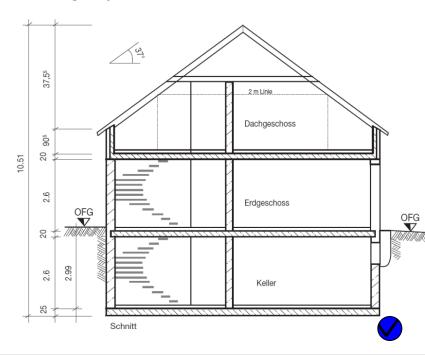
a die Deckenauflagertiefe

Sicherheitskonzept

Vereinf. Verfahren

Konstruktion

Beispiele


Fazit

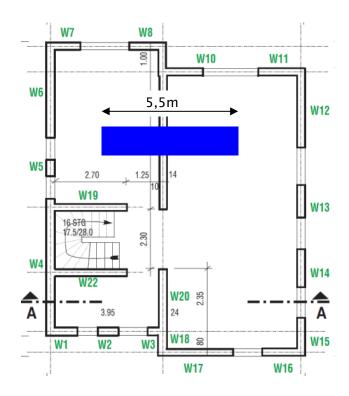
Bemessungsbeispiel nach <u>Stark Vereinfachtem Verfahren</u> (EC6-3, Anhang A): Einfamilienhaus mit KG / EG / DG

□ Übersicht

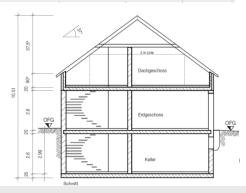
Bemessungsbeispiel Einfamilienhaus

Sicherheitskonzept

Vereinf. Verfahren


Bemessungsbeispiel nach <u>Stark Vereinfachtem Verfahren</u> (EC6-3, Anhang A): Einfamilienhaus mit KG / EG / DG

Lastermittlung Innenwand W 21


Konstruktion

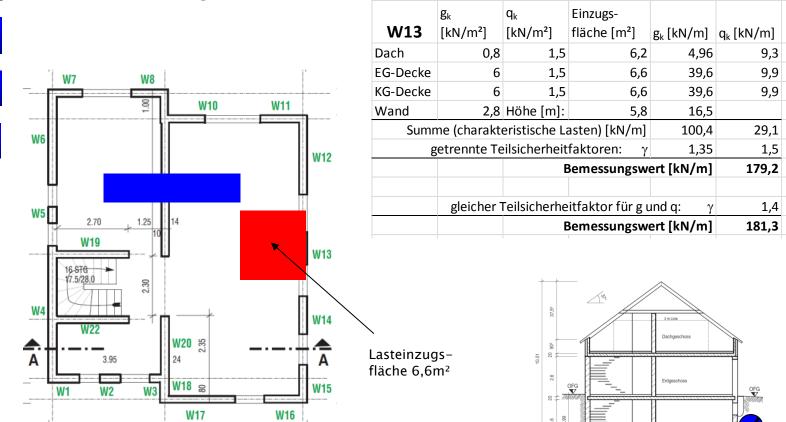
Beispiele

Fazit

14124	g _k	q _k	Einzugs-	g _k	q _k		
W21	[kN/m²]	[kN/m²]	breite [m]	[kN/m]	[kN/m]		
Dach	0,8	2	5,5	4,4	11		
EG-Decke	6	1,5	5,5	33	8,3		
KG-Decke	6	1,5	5,5	33	8,3		
Wand	4	Höhe [m]:	7,4	29,6			
Summe (charakteristische Lasten) [kN/m] 99,9 27							
getrennte Teilsicherheitfaktoren: γ 1,35							
		Bemo	176,4				
gleicher Teilsicherheitfaktor für g und q: γ 1,4							
	Bemessungswert [kN/m] 17						

Sicherheitskonzept

Vereinf. Verfahren


Konstruktion

Beispiele

Fazit

Bemessungsbeispiel nach <u>Stark Vereinfachtem Verfahren</u> (EC6-3, Anhang A): Einfamilienhaus mit KG / EG / DG

Lastermittlung Außenwand W13

Sicherheitskonzept

Vereinf. Verfahren

Konstruktion

Beispiele

Fazit

Bemessungsbeispiel nach <u>Stark Vereinfachtem Verfahren</u> (EC6-3, Anhang A): Einfamilienhaus mit KG / EG / DG

- □ Bemessung Innenwand W21:
- □ t=17,5cm, KLB Planvollblock 6/DM \rightarrow f_k = 4,3 N/mm², f_d = 4,3 N/mm² · 0,85/1,5=2,44N/mm²

Knicklänge: $h_{ef} = \rho_2 \cdot h = 0.75 \cdot 2.6m = 1.95m$

- \rightarrow Schlankheit: $\lambda = h_{ef}/t=1,95m/0,175m=11,1$
- □ Stark vereinfachtes Verfahren: $c_A = 0.5$ (da $\lambda \le 1.8$ und $f_k \ge 1.8$ N/mm²)
- \Box Vereinfachtes Verfahren: $\Phi = \Phi_1 = 0.85 0.0011 \cdot (11.1)^2 = 0.71$
- $\square \ \ N_{Rd,Stark \ vereinfachtes \ Verfahren} = \ 0.5 \cdot \ 0.175 m \cdot \ 2.44 N/mm^2 \\ = 213 kN/m$
- $\exists N_{Rd, vereinfachtes\ Verfahren} = 0,71 \cdot 0,175m \cdot 2,44N/mm^2 = 302kN/m$
- □ Nachweis: N_{Ed} =176,4kN/m < N_{Rd} =213kN/m (bzw. 302 kN/m)

Sicherheitskonzept

Vereinf. Verfahren

Konstruktion

Beispiele

Fazit

Bemessungsbeispiel nach <u>Stark Vereinfachtem Verfahren</u> (EC6-3, Anhang A): Einfamilienhaus mit KG / EG / DG

- ☐ Bemessung Außenwand W13:
- □ Superdämmblock SW1 (2/DM) (abZ 17.1–730) t=42,5cm, Deckenauflagertiefe $a=2 \cdot t/3=28,3$ cm → $f_k = 1,5$ N/mm², $f_d=1,5$ N/mm²· 0,85/1,5=0,85N/mm²

Steindruck-	Steinsorte				
festigkeits-		Wärmedämm-	Planvoll-		
klasse	blöcke SW1	blöcke W3	blöcke		
	Z-17.1-730	Z-17.1-766	Z 17.1-459		
	f _k				
	N/mm²				
2	1,5	1,3	-		
4	2,7	2,1	-		
6	3,8	2,6	4,3		
12	-	-	6,9		
20	-	-	10,0		

Sicherheitskonzept

Vereinf. Verfahren

Konstruktion

Beispiele

Fazit

Bemessungsbeispiel nach <u>Stark Vereinfachtem Verfahren</u> (EC6-3, Anhang A): Einfamilienhaus mit KG / EG / DG

- □ Bemessung Außenwand W13:
- □ Superdämmblock SW1 (2/DM) (abZ 17.1–739) t=42,5cm, Deckenauflagertiefe $a=2 \cdot t/3=28,3$ cm → $f_k = 1,5$ N/mm², $f_d=1,5$ N/mm²· 0,85/1,5=0,85N/mm²

Knicklänge: $h_{ef}=h=2.6m \rightarrow Schlankheit$: $\lambda = h_{ef}/t=2.6m/0.425m=6.1$

- □ Stark vereinfachtes Verfahren: $c_A = 0.5$ (da $l_f < 5.5$ m)
- □ Vereinfachtes Verfahren: $\Phi_1 = 0.85 \cdot 28.3/42.5 0.0011 \cdot (6.1)^2 = 0.52$

$$\Phi_2 = \min\{1,6-5,2m/5m;0,9\cdot28,3/42,5\}$$

$$\Phi_2 = \min\{0,56;0,6\} = 0,6$$

- $\square \ N_{Rd,Stark\ vereinfachtes\ Verfahren} = 0.5 \cdot 0.425 m \cdot 0.85 N/mm^2 = 181 kN/m$
- $\square \ \ N_{Rd,vereinfachtes\ Verfahren} = \ 0.521 \cdot 0.425m \cdot 0.85N/mm^2 \qquad = 188kN/m$
- \square Nachweis: $N_{Ed} = 179,2 \text{ kN/m} < N_{Rd} = 181 \text{kN/m} \text{ (bzw. } 188 \text{kN/m)}$

Sicherheitskonzept

Vereinf. Verfahren

Konstruktion

Beispiele

Fazit

Bemessungsbeispiel nach <u>Stark Vereinfachtem Verfahren</u> (EC6-3, Anhang A): Einfamilienhaus mit KG / EG / DG

□ Bemessung Außenwand W13: Alternativen:
 <u>Kalopor (SFK4)</u> abZ 17.1.959 oder <u>ISOSTAR (SFK4)</u> abz. 17-1-1075)

Steindruck-	Steinsorte						
festigkeits-	Hohlh	löcke	Kalopor	Kalopor Ultra	ISOSTAR	SK 08/09	
klasse	Z-17.1-797 Typ I Typ II		Z-17.1-959		Z-17.1-1075		
Maooo			2 17.1 000	2 1711 1020	2 17.11 1070	2 1711 1070	
	f_k in N/mm ²						
2	1,6	1,4	0,9	0,9	1,1	1,02)	
4	2,5	2,2	1,7	-	1,71)	-	
6	3,2	2,9	-	-	-	-	
8	3,9	3,5	-	-	-	-	
12	4,3	4,0	-	-	-	-	
	1) für Mauenwerk der Wanddicke						

Tabelle 7a: Charakteristische Druckfestigkeit f, in

42,5 cm gilt 1,8 MN/m²

Sicherheitskonzept

Vereinf. Verfahren

Konstruktion

Beispiele

Fazit

Bemessungsbeispiel nach <u>Stark Vereinfachtem Verfahren</u> (EC6-3, Anhang A): Einfamilienhaus mit KG / EG / DG

□ Bemessung Außenwand W13: Alternativen:
 <u>Kalopor (SFK4)</u> abZ 17.1.959 oder <u>ISOSTAR (SFK4)</u> abz. 17-1-1075)

- $N_{Rd.Stark \ Vereinfachtes \ Verfahren} = 0.5 \cdot 0.425 \text{m} \cdot 0.96 \text{N/mm}^2 = 204 \text{kN/m}$
- $\begin{array}{l} N_{Rd,vereinfachtes\ Verfahren} = \\ 0,521 \cdot 0,425m \cdot 0,96N/mm^2 \\ = 212kN/m \end{array}$
- □ Nachweis: $N_{Ed}=179,2kN/m < N_{Rd}=204kN/m$ (bzw. 212kN/m)

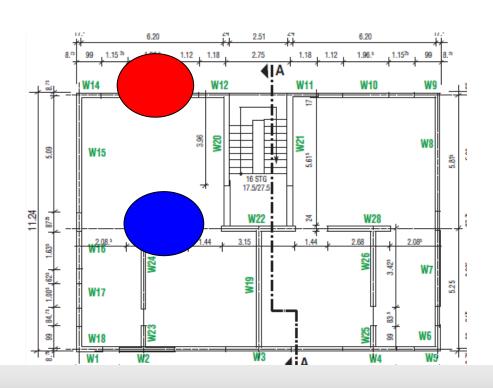
- $N_{Rd.Stark \ vereinfachtes \ Verfahren} = 0.5 \cdot 0.425 m \cdot 1.02 N/mm^2 = 217 N/m$
- $\begin{array}{ll} \square & N_{Rd,vereinfachtes\ Verfahren} = \\ & 0,521 \cdot 0,425m \cdot 1,02N/mm^2 \\ & = 226kN/m \end{array}$
- □ Nachweis: $N_{Ed}=179,2kN/m < N_{Rd}=217kN/m$ (bzw. 226kN/m)

Sicherheitskonzept

Vereinf. Verfahren

Konstruktion

Beispiele


Fazit

Bemessungsbeispiel nach <u>Vereinfachtem Verfahren</u> (EC6-3): Mehrfamilienhaus: EG + 4 Obergeschosse

Baustoff: KLBQUADRO SFK20, Dünnbettmörtel (abZ 17.1-852)

Außenwand W13: t = 17,5 cm

Innenwand W27: t=24cm

53

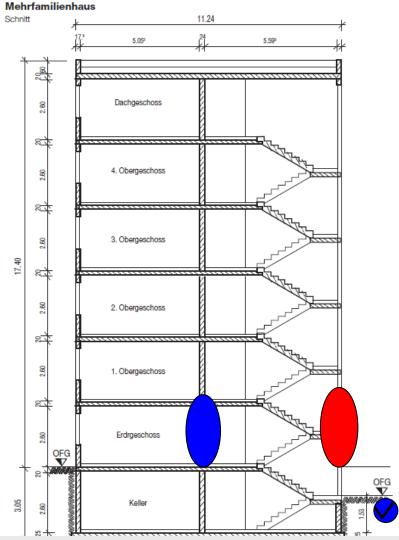
Einführung

Sicherheitskonzept

Vereinf. Verfahren

Konstruktion

Beispiele


Fazit

Bemessungsbeispiel nach <u>Vereinfachtem Verfahren</u> (EC6-3):

Mehrfamilienhaus

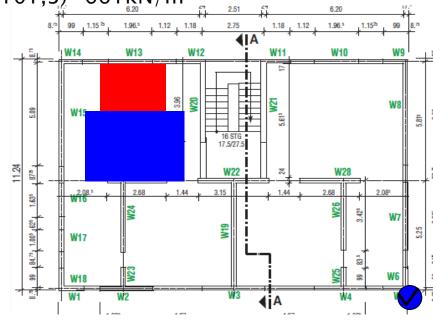
- Schnittgrößen
- Bemessung
- ☐ Außenwand W13:
 - W13:
- Innenwand W27:

Sicherheitskonzept

Vereinf. Verfahren

Konstruktion

Beispiele


Fazit

Bemessungsbeispiel nach <u>Vereinfachtem Verfahren</u> (EC6-3): Mehrfamilienhaus: EG + 4 Obergeschosse

Einwirkungen:

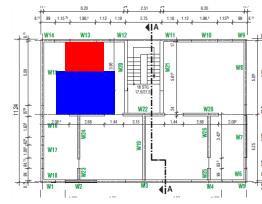
W13:
$$N_{gk} = 231,3kN/m$$
, $N_{qk} = 49,9kN/m$
=> $N_{Ed} = 1,4 \cdot (231,3+49,9) = 394 kN/m$

W27: $N_{gk} = 370,7kN/m$, $N_{qk} = 101,3kN/m$ => $N_{Ed} = 1,4 \cdot (370,7+101,3) = 661kN/m$

Sicherheitskonzept

Vereinf. Verfahren

Konstruktion


Beispiele

Fazit

Bemessungsbeispiel nach <u>Vereinfachtem Verfahren</u> (EC6-3): Mehrfamilienhaus: EG + 4 Obergeschosse

□ Bemessung:

- □ W27: t=24cm, Deckenauflagertiefe a=t Knicklänge: $h_{ef}=\rho_2$ · h=0,9*2,6m=2,34m → Schlankheit: $\lambda=h_{ef}/t=2,34m/0,24m=9,75$ Φ=Φ₁=0,85-0,0011· (9,75)²=0,74 $N_{Rd}=0,74$ · 0,24m· 5,67N/mm²=1014kN/m ≥ $N_{Ed}=661$ kN/m
- $\begin{array}{l} \hline \square \\ \text{W13: } t = 17,5 \text{cm, Deckenauflagertiefe a=t} \\ \text{Knicklänge } h_{ef} = \rho_2 \cdot h = 0,75 * 2,6 m = 1,95 m \\ \rightarrow \text{Schlankheit: } \lambda = h_{ef}/t = 1,95 m/0,175 m = 11,1 \\ \text{Deckenstützweite } l_f = 5,8 m \\ \Phi_1 = 0,85 0,0011 \cdot (11,1)^2 = 0,71 \\ \Phi_2 = min \{1,6 5,8 m/6 m;0,9 \cdot 0,175/0,175\} \\ \Phi_2 = min \{0,63;0,9\} = \underline{0,63} \\ N_{Rd} = 0,63 \cdot 0,175 m \cdot 5,67 N/m m^2 = 625 kN/m \geq N_{Ed} = 394 \ kN/m \} \\ \end{array}$

Einführung Zus Sicherheitskonzept Vereinf. Verfahren Konstruktion Beispiele Fazit N

Zusammenfassung

- ☐ Anforderungen: Tragfähigkeit / Gebrauchstauglichkeit
- □ Konstruktion: Wand-Decken-Knoten → Ausbildung Detail
- □ Nachweise nach dem vereinfachten Verfahren von Eurocode 6, Teil 3 einfach und schnell führbar
- Stark vereinfachtes Verfahren für einfache Gebäude und für Vorbemessung geeignet

Vielen Dank für Ihre Aufmerksamkeit!